国足踢进世界杯 / 2025-06-18 18:14:05

基本符号

小写希腊字母

注:部分希腊字母在数学公式中常以变量形式出现,例如

ϵ

\epsilon

ϵ在数学中一般写法为

ε

\varepsilon

ε,

ϕ

\phi

ϕ在数学中通常写作

φ

\varphi

φ

符号语法符号语法符号语法

α

\alpha

α\alpha

β

\beta

β\beta

γ

\gamma

γ\gamma

θ

\theta

θ\theta

ε

\varepsilon

ε\varepsilon

δ

\delta

δ\delta

μ

\mu

μ\mu

ν

\nu

ν\nu

η

\eta

η\eta

ζ

\zeta

ζ\zeta

λ

\lambda

λ\lambda

ψ

\psi

ψ\psi

σ

\sigma

σ\sigma

ξ

\xi

ξ\xi

τ

\tau

τ\tau

ϕ

\phi

ϕ\phi

φ

\varphi

φ\varphi

ρ

\rho

ρ\rho

χ

\chi

χ\chi

ω

\omega

ω\omega

π

\pi

π\pi

大写希腊字母

大写希腊字母通常是小写希腊字母的LATEX语法第一个字母改为大写,见下表

符号语法符号语法符号语法

Σ

\Sigma

Σ\Sigma

Π

\Pi

Π\Pi

Δ

\Delta

Δ\Delta

Γ

\Gamma

Γ\Gamma

Ψ

\Psi

Ψ\Psi

Θ

\Theta

Θ\Theta

Λ

\Lambda

Λ\Lambda

Ω

\Omega

Ω\Omega

Φ

\Phi

Φ\Phi

Ξ

\Xi

Ξ\Xi

常用字体

默认的字体为

A

B

C

d

e

f

ABCdef

ABCdef,也就是\mathnormal{ABCdef}(当然,打公式的时候不需要加上这个\mathnormal,直接打字母就是这个效果)

字体语法字体语法

A

B

C

d

e

f

\mathrm{ABCdef}

ABCdef\mathrm{ABCdef}

A

B

C

d

e

f

\mathbf{ABCdef}

ABCdef\mathbf{ABCdef}

A

B

C

d

e

f

\mathit{ABCdef}

ABCdef\mathit{ABCdef}

A

B

C

d

e

f

\pmb{ABCdef}

ABCdef\pmb{ABCdef}

A

B

C

d

e

f

\mathscr{ABCdef}

ABCdef\mathscr{ABCdef}

A

B

C

d

e

f

\mathcal{ABCdef}

ABCdef\mathcal{ABCdef}

A

B

C

d

e

f

\mathfrak{ABCdef}

ABCdef\mathfrak{ABCdef}

A

B

C

d

e

f

\mathbb{ABCdef}

ABCdef\mathbb{ABCdef}

常见运算符

运算符语法运算符语法运算符语法

+

+

++

-

−-

×

\times

×\times

±

\pm

±\pm

\cdot

⋅\cdot

\ast

∗\ast

\cup

∪\cup

\cap

∩\cap

\circ

∘\circ

\lor

∨\lor或\vee

\land

∧\land或\wedge

¬

\lnot

¬\lnot

\oplus

⊕\oplus

\ominus

⊖\ominus

\otimes

⊗\otimes

\odot

⊙\odot

\oslash

⊘\oslash

\bullet

∙\bullet

x

\sqrt{x}

x

​\sqrt{x}

x

n

\sqrt[n]{x}

nx

​\sqrt[n]{x}

大尺寸运算符

运算符语法运算符语法运算符语法

\sum

∑\sum

\prod

∏\prod

\int

∫\int

\bigcup

⋃\bigcup

\bigcap

⋂\bigcap

\oint

∮\oint

\bigvee

⋁\bigvee

\bigwedge

⋀\bigwedge

\iint

∬\iint

\coprod

∐\coprod

\bigsqcup

⨆\bigsqcup

\oiint

​\oiint

常见关系符号

符号语法符号语法符号语法

<

<

<<

>

>

>>

=

=

==

\leq

≤\leq

\geq

≥\geq

\neq

=\neq

\ll

≪\ll

\gg

≫\gg

\equiv

≡\equiv

\subset

⊂\subset

\supset

⊃\supset

\approx

≈\approx

\subseteq

⊆\subseteq

\supseteq

⊇\supseteq

\sim

∼\sim

\in

∈\in

\ni

∋\ni

\propto

∝\propto

\vdash

⊢\vdash

\dashv

⊣\dashv

\models

⊨\models

\mid

∣\mid

\parallel

∥\parallel

\perp

⊥\perp

\notin

∈/\notin

\Join

⋈\Join

\nsim

≁\nsim

\subsetneq

⊊\subsetneq

\supsetneq

⊋\supsetneq

数学模式重音符

符号语法符号语法符号语法

a

^

\hat{a}

a^\hat{a}

a

ˉ

\bar{a}

aˉ\bar{a}

a

~

\tilde{a}

a~\tilde{a}

a

\vec{a}

a

\vec{a}

a

˙

\dot{a}

a˙\dot{a}

a

¨

\ddot{a}

a¨\ddot{a}

a

b

c

^

\widehat{abc}

abc

\widehat{abc}

a

b

c

~

\widetilde{abc}

abc

\widetilde{abc}

a

b

c

\overline{abc}

abc\overline{abc}

箭头

如果需要长箭头,只需要在语法前面加上\long,例如\longleftarrow即为

\longleftarrow

⟵,如果加上\Long则变为双线长箭头,例如\Longleftarrow即为

\Longleftarrow

符号语法符号语法符号语法

\leftarrow

←\leftarrow

\rightarrow

→\rightarrow

\leftrightarrow

↔\leftrightarrow

\Leftarrow

⇐\Leftarrow

\Rightarrow

⇒\Rightarrow

\Leftrightarrow

⇔\Leftrightarrow

\uparrow

↑\uparrow

\downarrow

↓\downarrow

\updownarrow

↕\updownarrow

\Uparrow

⇑\Uparrow

\Downarrow

⇓\Downarrow

\Updownarrow

⇕\Updownarrow

\leftharpoonup

↼\leftharpoonup

\leftharpoondown

↽\leftharpoondown

\rightharpoonup

⇀\rightharpoonup

\rightharpoondown

⇁\rightharpoondown

\rightleftharpoons

⇌\rightleftharpoons

\leftrightharpoons

⇋\leftrightharpoons

\iff

⟺\iff

\mapsto

↦\mapsto

括号

括号语法括号语法括号语法

(

)

()

()()

[

]

[]

[][]

{

}

\{\}

{}\{\}

\lfloor\rfloor

⌊⌋\lfloor\rfloor

\lceil\rceil

⌈⌉\lceil\rceil

\langle\rangle

⟨⟩\langle\rangle

大尺寸括号

括号语法括号语法

(

)

\left(\right)

()\left( \right)

[

]

\left[ \right]

[]\left[ \right]

x

1

x

2

x

n

n

\overbrace{x_1x_2\ldots x_n}^{n}

x1​x2​…xn​

​n​\overbrace{x_1x_2\ldots x_n}^{n}

x

1

x

2

x

n

n

\underbrace{x_1x_2\ldots x_n}_{n}

n

x1​x2​…xn​​​\underbrace{x_1x_2\ldots x_n}_{n}

注:大尺寸的()和[]是可以根据公式的高度自动调节的,例如

\arg\min_{\theta}

\left[

-\sum_{i=1}^{n}

\left[

\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +

(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

\right]

\right]

arg

min

θ

[

i

=

1

n

[

y

(

i

)

ln

(

h

θ

(

x

(

i

)

)

)

+

(

1

y

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

]

]

\arg\min_{\theta} \left[ -\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right] \right]

argθmin​[−i=1∑n​[y(i)ln(hθ​(x(i)))+(1−y(i))ln(1−hθ​(x(i)))]]

可以看出,括号高度可以框住整个公式

因此在这种大型的公式中,使用大尺寸括号视觉效果更美观

其他常见符号

符号语法符号语法符号语法

\forall

∀\forall

\exist

∃\exist

\angle

∠\angle

\emptyset

∅\emptyset

\partial

∂\partial

\infty

∞\infty

\ldots

…\ldots

\cdots

⋯\cdots

\dots

…\dots

\vdots

⋮\vdots

\ddots

⋱\ddots

\prime

′\prime

\because

∵\because

\therefore

∴\therefore

\Box

□\Box

\triangle

△\triangle

§

\S

§\S

数学公式写法

上下标

^:上标_:下标

例如:

\sum_{i=1}^{n}X_n表示

i

=

1

n

X

n

\sum_{i=1}^{n}X_n

∑i=1n​Xn​\int_{0}^{\infty}x^2dx表示

0

x

2

d

x

\int_{0}^{\infty}x^2dx

∫0∞​x2dx\prod_{i=1}^{n}X_n表示

i

=

1

n

X

n

\prod_{i=1}^{n}X_n

∏i=1n​Xn​

分数

使用\frac{}{}即可,例如\frac{a}{b}表示

a

b

\frac{a}{b}

ba​

插入文字

使用\text,例如\text{hello,world!}表示

hello,world!

\text{hello,world!}

hello,world!

常见函数

函数语法函数语法函数语法

log

(

)

\log()

log()\log()

ln

(

)

\ln()

ln()\ln()

lg

(

)

\lg()

lg()\lg()

max

\max

max\max

min

\min

min\min

lim

x

\lim_{x \to \infty}

limx→∞​\lim_{x \to \infty}

arg

max

c

C

\arg\max_{c \in C}

argmaxc∈C​\arg\max_{c \in C}

arg

min

c

C

\arg\min_{c \in C}

argminc∈C​\arg\min_{c \in C}

exp

\exp

exp\exp

矩阵、行列式

&表示分隔元素,\\表示换行

A=

\begin{pmatrix}

a_{11} & a_{12} \\

a_{21} & a_{22}

\end{pmatrix}

A

=

(

a

11

a

12

a

21

a

22

)

A= \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}

A=(a11​a21​​a12​a22​​)

A=

\begin{bmatrix}

a_{11} & a_{12} \\

a_{21} & a_{22}

\end{bmatrix}

A

=

[

a

11

a

12

a

21

a

22

]

A= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}

A=[a11​a21​​a12​a22​​]

A=

\begin{Bmatrix}

a_{11} & a_{12} \\

a_{21} & a_{22}

\end{Bmatrix}

A

=

{

a

11

a

12

a

21

a

22

}

A= \begin{Bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Bmatrix}

A={a11​a21​​a12​a22​​}

A=

\begin{vmatrix}

a_{11} & a_{12} \\

a_{21} & a_{22}

\end{vmatrix}

A

=

a

11

a

12

a

21

a

22

A= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}

A=

​a11​a21​​a12​a22​​

A=

\begin{Vmatrix}

a_{11} & a_{12} \\

a_{21} & a_{22}

\end{Vmatrix}

A

=

a

11

a

12

a

21

a

22

A= \begin{Vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Vmatrix}

A=

​a11​a21​​a12​a22​​

A=

\begin{matrix}

a_{11} & a_{12} \\

a_{21} & a_{22}

\end{matrix}

A

=

a

11

a

12

a

21

a

22

A= \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}

A=a11​a21​​a12​a22​​

多行公式对齐

使用\begin{split} \end{split},在需要对齐的地方添加&符号,注意需要用\\来换行。

例如:

\begin{split}

L(\theta)

&= \arg\max_{\theta}\ln(P_{All})\\

&= \arg\max_{\theta}\ln\prod_{i=1}^{n}

\left[

(h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot

(1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}}

\right]\\

&= \arg\max_{\theta}\sum_{i=1}^{n}

\left[

\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +

(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

\right]\\

&= \arg\min_{\theta}

\left[

-\sum_{i=1}^{n}

\left[

\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +

(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

\right]

\right]\\

&= \arg\min_{\theta}\mathscr{l}(\theta)

\end{split}

L

(

θ

)

=

arg

max

θ

ln

(

P

A

l

l

)

=

arg

max

θ

ln

i

=

1

n

[

(

h

θ

(

x

(

i

)

)

)

y

(

i

)

(

1

h

θ

(

x

(

i

)

)

)

1

y

(

i

)

]

=

arg

max

θ

i

=

1

n

[

y

(

i

)

ln

(

h

θ

(

x

(

i

)

)

)

+

(

1

y

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

]

=

arg

min

θ

[

i

=

1

n

[

y

(

i

)

ln

(

h

θ

(

x

(

i

)

)

)

+

(

1

y

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

]

]

=

arg

min

θ

l

(

θ

)

\begin{split} L(\theta) &= \arg\max_{\theta}\ln(P_{All})\\ &= \arg\max_{\theta}\ln\prod_{i=1}^{n} \left[ (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}} \right]\\ &= \arg\max_{\theta}\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right]\\ &= \arg\min_{\theta} \left[ -\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right] \right]\\ &= \arg\min_{\theta}\mathscr{l}(\theta) \end{split}

L(θ)​=argθmax​ln(PAll​)=argθmax​lni=1∏n​[(hθ​(x(i)))y(i)⋅(1−hθ​(x(i)))1−y(i)]=argθmax​i=1∑n​[y(i)ln(hθ​(x(i)))+(1−y(i))ln(1−hθ​(x(i)))]=argθmin​[−i=1∑n​[y(i)ln(hθ​(x(i)))+(1−y(i))ln(1−hθ​(x(i)))]]=argθmin​l(θ)​

上例中,在=前添加了&,因此实现等号对齐;

\begin{split} \end{split}语法默认为右对齐,也就是说如果不在任何地方添加&符号,则公式默认右侧对齐,例如:

\begin{split}

L(\theta)

= \arg\max_{\theta}\ln(P_{All})\\

= \arg\max_{\theta}\ln\prod_{i=1}^{n}

\left[

(h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot

(1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}}

\right]\\

= \arg\max_{\theta}\sum_{i=1}^{n}

\left[

\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +

(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

\right]\\

= \arg\min_{\theta}

\left[

-\sum_{i=1}^{n}

\left[

\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +

(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

\right]

\right]\\

= \arg\min_{\theta}\mathscr{l}(\theta)

\end{split}

上述LATEX代码没有添加&符号,则公式右对齐:

L

(

θ

)

=

arg

max

θ

ln

(

P

A

l

l

)

=

arg

max

θ

ln

i

=

1

n

[

(

h

θ

(

x

(

i

)

)

)

y

(

i

)

(

1

h

θ

(

x

(

i

)

)

)

1

y

(

i

)

]

=

arg

max

θ

i

=

1

n

[

y

(

i

)

ln

(

h

θ

(

x

(

i

)

)

)

+

(

1

y

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

]

=

arg

min

θ

[

i

=

1

n

[

y

(

i

)

ln

(

h

θ

(

x

(

i

)

)

)

+

(

1

y

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

]

]

=

arg

min

θ

l

(

θ

)

\begin{split} L(\theta) = \arg\max_{\theta}\ln(P_{All})\\ = \arg\max_{\theta}\ln\prod_{i=1}^{n} \left[ (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}} \right]\\ = \arg\max_{\theta}\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right]\\ = \arg\min_{\theta} \left[ -\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right] \right]\\ = \arg\min_{\theta}\mathscr{l}(\theta) \end{split}

L(θ)=argθmax​ln(PAll​)=argθmax​lni=1∏n​[(hθ​(x(i)))y(i)⋅(1−hθ​(x(i)))1−y(i)]=argθmax​i=1∑n​[y(i)ln(hθ​(x(i)))+(1−y(i))ln(1−hθ​(x(i)))]=argθmin​[−i=1∑n​[y(i)ln(hθ​(x(i)))+(1−y(i))ln(1−hθ​(x(i)))]]=argθmin​l(θ)​

如果希望左对齐,例如

\begin{split}

&\ln h_{\theta}(\mathbf{x}^{(i)})

= \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}

= -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\

&\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

= \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}})

= -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}})

\end{split}

ln

h

θ

(

x

(

i

)

)

=

ln

1

1

+

e

θ

T

x

(

i

)

=

ln

(

1

+

e

θ

T

x

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

=

ln

(

1

1

1

+

e

θ

T

x

(

i

)

)

=

θ

T

x

(

i

)

ln

(

1

+

e

θ

T

x

(

i

)

)

\begin{split} &\ln h_{\theta}(\mathbf{x}^{(i)}) = \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}} = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\ &\ln(1-h_{\theta}(\mathbf{x}^{(i)})) = \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}) = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}}) \end{split}

​lnhθ​(x(i))=ln1+e−θTx(i)1​=−ln(1+eθTx(i))ln(1−hθ​(x(i)))=ln(1−1+e−θTx(i)1​)=−θTx(i)−ln(1+eθTx(i))​

除了\begin{split} \end{split},也可以用\begin{align} \end{align},用法与split相同,对齐方式也相同;

只有一点不同:采用align环境会默认为每一条公式编号(如下例),split则不会编号。

\begin{align}

&\ln h_{\theta}(\mathbf{x}^{(i)})

= \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}

= -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\

&\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

= \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}})

= -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}})

\end{align}

ln

h

θ

(

x

(

i

)

)

=

ln

1

1

+

e

θ

T

x

(

i

)

=

ln

(

1

+

e

θ

T

x

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

=

ln

(

1

1

1

+

e

θ

T

x

(

i

)

)

=

θ

T

x

(

i

)

ln

(

1

+

e

θ

T

x

(

i

)

)

\begin{align} &\ln h_{\theta}(\mathbf{x}^{(i)}) = \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}} = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\ &\ln(1-h_{\theta}(\mathbf{x}^{(i)})) = \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}) = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}}) \end{align}

​lnhθ​(x(i))=ln1+e−θTx(i)1​=−ln(1+eθTx(i))ln(1−hθ​(x(i)))=ln(1−1+e−θTx(i)1​)=−θTx(i)−ln(1+eθTx(i))​​

但可以在align后加一个*号,则align环境也可以取消公式自动编号,如下: (也就是说align*和split的用法完全相同)

\begin{align*}

&\ln h_{\theta}(\mathbf{x}^{(i)})

= \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}

= -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\

&\ln(1-h_{\theta}(\mathbf{x}^{(i)}))

= \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}})

= -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}})

\end{align*}

ln

h

θ

(

x

(

i

)

)

=

ln

1

1

+

e

θ

T

x

(

i

)

=

ln

(

1

+

e

θ

T

x

(

i

)

)

ln

(

1

h

θ

(

x

(

i

)

)

)

=

ln

(

1

1

1

+

e

θ

T

x

(

i

)

)

=

θ

T

x

(

i

)

ln

(

1

+

e

θ

T

x

(

i

)

)

\begin{align*} &\ln h_{\theta}(\mathbf{x}^{(i)}) = \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}} = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\ &\ln(1-h_{\theta}(\mathbf{x}^{(i)})) = \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}) = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}}) \end{align*}

​lnhθ​(x(i))=ln1+e−θTx(i)1​=−ln(1+eθTx(i))ln(1−hθ​(x(i)))=ln(1−1+e−θTx(i)1​)=−θTx(i)−ln(1+eθTx(i))​

方程组

使用\begin{cases} \end{cases}

例如:

\begin{cases}

\begin{split}

p &= P(y=1|\mathbf{x})=

\frac{1}{1+e^{-\theta^T\mathbf{X}}}\\

1-p &= P(y=0|\mathbf{x})=1-P(y=1|\mathbf{x})=

\frac{1}{1+e^{\theta^T\mathbf{X}}}

\end{split}

\end{cases}

{

p

=

P

(

y

=

1

x

)

=

1

1

+

e

θ

T

X

1

p

=

P

(

y

=

0

x

)

=

1

P

(

y

=

1

x

)

=

1

1

+

e

θ

T

X

\begin{cases} \begin{split} p &= P(y=1|\mathbf{x})= \frac{1}{1+e^{-\theta^T\mathbf{X}}}\\ 1-p &= P(y=0|\mathbf{x})=1-P(y=1|\mathbf{x})= \frac{1}{1+e^{\theta^T\mathbf{X}}} \end{split} \end{cases}

⎧​p1−p​=P(y=1∣x)=1+e−θTX1​=P(y=0∣x)=1−P(y=1∣x)=1+eθTX1​​​

注意LATEX语法可以嵌套使用,上例即为\begin{cases} \end{cases}下嵌套了begin{split} \end{split}。

也可以将公式和文字结合起来,例如:

\text{Decision Boundary}=

\begin{cases}

1\quad \text{if }\ \hat{y}>0.5\\

0\quad \text{otherwise}

\end{cases}

Decision Boundary

=

{

1

if

y

^

>

0.5

0

otherwise

\text{Decision Boundary}= \begin{cases} 1\quad \text{if}\quad \hat{y}>0.5\\ 0\quad \text{otherwise} \end{cases}

Decision Boundary={1ify^​>0.50otherwise​ 注:\quad表示空格。

原装电瓶和修复电瓶怎么分辨(怎样分辨原厂电瓶和翻新电瓶)
“69”究竟是什么意思?一文带你了解其背后的文化与含义